UCF116, New Inhibitors of Farnesyltransferase Produced by *Streptomyces*

MITSUNOBU HARA*, SHIRO SOGA, MIKITO ITOH, Kenzo Shono, Jun Eishima and Tamio Mizukami

Tokyo Research Laboratories, Kyowa Hakko Co. Ltd., Asahi-machi 3-6-6, Machida-shi, Tokyo 194-8533, Japan

(Received for publication February 16, 2000)

Farnesyltransferase (FTase) catalyses the farnesylation of Ras p21 protein on a cysteine residue of a carboxylterminal CAAX motif. This post-translational modification is necessary for their association with plasma membranes and oncogenic activity. Therefore, inhibition of Ras farnesyltransferase presents a potential therapeutic target for novel anticancer agents¹⁾. Recently, several natural product inhibitors of FTase have been reported including manumycin²⁾, andrastin D³⁾, clavaric acid⁴⁾, and kampanol B⁵⁾. Our microbial product screening efforts have now led to the isolation of new inhibitors of FTase, UCF116-A (1), -B (2) and -C (3), produced by *Streptomyces* sp. In this paper, fermentation, isolation and biochemical properties of UCF116 are described.

The producing organism taxonomically classified as *Streptomyces* sp. was cultivated at 28°C for 3 days in two 30-liter jar fermenters containing 16 liters of a medium consisting of soluble starch 40 g, soybean meal 10 g, corn steep liquor 0.5 g, dry yeast 0.5 g, KH_2PO_4 0.5 g, $Mg_3(PO_4)_2 \cdot 8H_2O$ 0.5 g in 1 liter of water, pH 7. Diaion HP-20 resin (10%) was added at 18 hours after inoculation. As reported previously⁶, this was efficient for increasing the fermentation titer of the secondary metabolites by absorbing and thereby preventing them from the degradation during a fermentation.

FTase enzyme assay²⁾ was used for detecting the active fractions in the following isolation procedure. The mycelial cake containing Diaion HP-20 resin was extracted with ethyl acetate. After concentrated *in vacuo*, the extract was dissolved in CHCl₃- ethyl acetate (1:4), and was subjected to silica gel column chromatography (BW300, Fuji devison) developed with CHCl₃- MeOH (7:3). The active eluates were combined and concentrated to dryness, and the residue was subjected to silica gel column chromatography (Lichroprep Si60, Merck) developed with hexane : ethyl acetate : MeOH (6:3:1) to give active fractions. They were combined and subjected to preparative HPLC using ODS (SH363-5 S-5 ODS, YMC) with 50% CH₃CN to give active fractions containing pure **1** (12 mg), and **2** (112 mg) and

	UCF116-A (1)	UCF116-B (2)	UCF116-C (3)
Appearance	pale yellow powder	white powder	white powder
Molecular formula HR-FAB-MS(m/z)	C37H48N2O8 649.3510 (M+H)+	C ₃₆ H ₄₈ N ₂ O ₈ 637.3509 (M+H) ⁺	$C_{34}H_{46}N_2O_8$ 611.3356 (M+H) ⁺
$[\alpha]_{D^{24}}$	$+31.2^{\circ}$	$+327^{\circ}$	+77°
()~	(c=0.127, CH ₃ OH)	(c=0.1334, CH ₃ OH)	(c=0.10, CH ₃ OH)
UV λmax, nm in CH3OH(ε)	281 (26,200)	304 (3,300)	302 (10,900)
	270 (33,400)	280 (31,300)	283 (4,100)
	262 (26,800)	271 (40,900)	271 (13,300)
	227 (21,500)	260 (31,600)	260 (11,200)
	203 (25,900)	206 (42,100)	204 (21,900)
IR (KBr) cm ⁻¹	3440, 2927, 2854	3367, 1732, 1653	3421, 1732, 1624
	1716, 1653, 1506	1219, 999	1537, 1454, 1213
	1180		1001
Rf value*	0.22	0.3	0.17

Table 1. Physico-chemical properties of UCF116-A (1), -B (2) and -C (3).

Silica gel TLC 60F₂₅₄(Merck). Hexane - EtOAc - MeOH (6:3:1)

inactive components 3 (10 mg) and 4 (70 mg), both of which have a similar UV absorption spectra to 1 and 2.

The physico-chemical properties are summarized in Table 1. The molecular formulas of 1, 2 and 3 were deduced to be $C_{37}H_{48}N_2O_8$, $C_{36}H_{48}N_2O_8$ and $C_{34}H_{46}N_2O_8$ by HR-FAB-MS. The structure of $1\sim4$ were shown in Fig. 1. 4 is a known compound, mycotrienin $\Pi^{7\sim11}$. 1, 2, 3 are new compounds with a structure similar to mycotrienin II. 1 has a *p*-quinone moiety but, 2 and 3 have a *p*-hydroquinone moiety. They differ from each other in the structure of a side chain at C-11. The details of structure elucidation will be published elsewhere¹².

FTase inhibition by UCF116 compounds is summarized in Table 2. 1 and 2 inhibited farnesylation of viral K-Ras by bovine brain FTase²) with the IC₅₀ values of 1.2 and 0.6 μ M, respectively. However, **3** and **4** did not show FTase inhibition up to $100 \,\mu$ M. FTase or GGTase-I enzyme activities were also studied by detecting the prenylation of GST-CIIS or -CIIL substrare by prenyltransferase enzyme involved in a rabbit reticulocyte lysate^{13,14}. **1** and **2** showed selective inhibition against FTase, and they showed very weak or no inhibition against GGTase-I.

We performed kinetic analysis of FTase inhibition by **2**. Fig. 2 shows the results of an experiment in which the concentration of the viral K-Ras protein was varied in the bovine brain FTase assay while farnesyl pyrophosphate concentration was kept constant. The kinetic profile suggests that **2** is competitive with the Ras protein substrate. The apparent *Ki* was found to be $5.9 \,\mu$ M.

Ras-competitive non-CAAX mimetics have recently

compound	FTase	FTase	GGTase-1	
	(bovine brain)	(reticulocyte lysate)		
1 (UCF116-A)	1.2	4.0	68	
2 (UCF116-B)	0.6	4.0	> 100	
3 (UCF116-C)	> 100	NT**	NT	
4 (Mycotrienin II)	> 100	NT	NT	

Table 2	2.	Inhibitory	activity*	against FT	ase and	GGTase-I.
		,		1 3		

Fig. 2. Lineweaver-Burk plot of FTase inhibition with UCF116-B (2).

Concentrations of UCF116-B used were 0 (\bigcirc), 1.1 (\bullet), and 3.3 (\Box) μ M.

been reported as inhibitors of FTase. Those include synthetic compound SCH44342¹⁵⁾ or a chembranolide diterpene type natural product¹⁶⁾. UCF116 compounds are another example of Ras-competitive non-CAAX mimetic type FTase inhibitors. It is to be noted that the substituent at the terminal amide linkage must contribute to their FTase inhibitory activity. The cyclohexenecarboxylalanine moiety of **2** seems to be essential for its FTase inhibitory activity because mycotrienin II (4), which has a cyclohexanecarboxylalanine, showed no FTase inhibition. This is consistent with the lack of FTase inhibition by mycotrienin $I^{7)}$ and trienomycin $A^{17)}$, both of which have a cyclohexanecarboxylalanine (data not shown). Although **1** has the same hexahydrobenzyl substituent as **4**, it inhibited FTase. This suggest that the cyclopropane ring in the side chain of C-11 in **1** has significantly contributed to its FTase inhibitory activity. Considering this SAR of UCF116 compounds, extensive modification of the substituent at the C-11 position of UCF116 could lead to the discovery of more potent FTase inhibitors.

References

- ROWINSKY, E. K.; J. J. WINDLE & D. D. VON HOFF.: Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J. Clinical Oncol. 17: 3631~3652, 1999
- 2) HARA, M.; K. AKASAKA, S. AKINAGA, M. OKABE, H. NAKANO, R. GOMEZ, D. WOOD, M. UH & F. TAMANOI: Identification of ras farnesyltransferase inhibitors by microbial screening. Proc. Natl. Acad. Sci. USA 90: 2281~2285, 1993
- UCHIDA, R.; K. SHIOMI, J. INOKOSHI, H. TANAKA, Y. IWAI & S. ŌMURA: Andrastin D, novel protein farnesyltransferase inhibitor produced by *Penicillium* sp. FO-3929. J. Antibiotics 49: 1278~1280, 1996
- 4) LINGHAM, R. B.; K. C. SILVERMAN, H. JAYASURIYA, B. M. KIM, S. E. AMO, F. R. WILSON, D. J. REW, M. D. SCHABER, J. D. BERGSTROM, K. S. KOBLAN, S. L. GRAHAM, N. E. KOHL, J. B. GIBBS & S. B. SINGH: Clavaric acid and steroidal analogues as ras- and FPP-directed inhibitors of human farnesyl-protein transferase. J. Med. Chem. 41: 4492~4501, 1998

- SINGH, S. B.; D. L. ZINK, M. WILLIAMS, J. D. POLISHOOK, M. SANCHEZ & K. C. SILVERMAN: Kampanols: novel ras farnesyl-protein transferase inhibitors from *Stachybrotrys kampalensis*. Bioorg. Med. Chem. Lett. 8: 2071~2076, 1998
- 6) HARA, M.; K. ASANO, I. KAWAMOTO, T. TAKIGUCHI, S. KATSUMATA, K. TAKAHASHI & H. NAKANO: Leinamycin, a new antitumor antibiotics from *Streptomycetes*; producing organism, fermentation and isolation. J. Antibiotics 42: 1768~1774, 1989
- SMITH, A. B.; J. L. WOOD & S. OMURA: (+)-Mycitrienins I and II: relative and absolute stereochemistry. Tetrahedron Lett. 32: 841~842, 1991
- CORONELLI, C.; R. C. PASQUALUCCI, J. E. THEIEMANN & G. TAMONI: Mycotrienin, a new polyene antibiotic isolated from *Streptomyces*. J. Antibiotics 20: 329~333, 1967
- 9) SUGITA, M.; Y. NATORI, T. SASAKI, K. FURIHATA, A. SHIMIZU, H. SETO & N. OTAKE: Studies on mycotrienin antibiotics, a novel class of ansamycins. I. Taxonomy, fermentation, isolation and properties of mycotrienins I and II. J. Antobiotics 35: 1460~1466, 1982
- 10) SUGITA, M.; T. SASAKI, K. FURIHATA, H. SETO & N. OTAKE: Studies on mycotrienin antibiotics, a novel class of ansamycins. II. Structure elucidation and biosynthesis of mycotrienins I and II. J. Antobiotics 35: 1467~1473, 1982
- 11) SUGITA, M.; Y. NATORI, N. SUEDA, K. FURIHATA, H. SETO & N. OTAKE: Studies on mycotrienin antibiotics, a novel class of ansamycins. III. The isolation, characterization

and structures of mycotrienins I and II. J. Antobiotics 35: 1474~1479, 1982

- 12) AOTANI, Y. & M. YOSHIDA: Structure determination of UCF116s, new inhibitors of farnesyltransferase. manuscript in preparation
- 13) VILLAR, K. D.; J. URANO, L. GUO & F. TAMANOI: A mutant form of human protein farnesyltransferase exhibits increased resistance to farnesyltransferase inhibitors. J. Biol. Chem. 274: 27010~27017, 1999
- 14) KHOSRAVI-FAR, R.; G. J. CLARK, K. ABE, A. D. COX, T. MCLAIN, R. J. LUTZ, M. SINENSKY & C. J. DER: Ras(CXXX) and Rab(CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 267: 24363~24368, 1992
- 15) BISHOP, W. R.; R. BOND, J. PETRIN, L. WANG, R. PATTON, R. DOLL, G. NJOROGE, J. CATINO, J. SCHWARTZ, W. ROSALINDA, R. SYTO, J. SHWARTZ, D. CARR & L. JAMES: Novel tricyclic inhibitors of farnesyl protein transferase. J. Biol. Chem. 270: 30611~30618, 1995
- 16) COVAL, S. J.; R. W. PATTON, J. M. PETRIN, L. JAMES, M. L. ROTHFSKY, S. L. LIN, M. PATEL, J. K. REED, A. T. MCPHAIL & W. R. BISHOP: A cembranolide diterpene farnesyl protein transferase inhibitor from the marine soft coral *Lobophytum cristagalli*. Bioinorg. & Med. Chem. Lett. 6: 909~912, 1996
- 17) FUNAYAMA, S.; K. OKADA, K. IWASAKI, K. KOMIYAMA & I. UMEZAWA: Structures of trienomycins A, B and C, novel cytocidal ansamycin antibiotics. J. Antibiotics 38: 1677~1683, 1985